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Abstract. This paper addresses a method for solving two classes of production-transportation prob- 
lems with concave production cost. By exploiting a special network structure both problems are 
reduced to a kind of resource allocation problem. It is shown that the resultant problem can be solved 
by using dynamic programming in time polynomial in the number of supply and demand points and 
the total demand. 
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1. Introduction 

In this paper we will discuss special classes of  production-transportation problems 
which arise in many practical applications, for instance: 

Suppose a corporation has one factory and a number of  warehouses in each 
of  several regions. Every factory produces a certain amount  of  goods, and can 
transport them only to warehouses in its assigned region. In addition to these 
branch factories, there is a head factory which can transport the product to every 
warehouse. This corporation has to decide how much goods each factory should 
produce,  and which warehouses the head factory should supply, so as to minimize 
the total production and transportation cost. 

In the above situation (see also Figure 1), we are concerned with two cases: 

(P1): The production cost of  the head factory need not be considered but its 
production capacity is restricted. 

(P2): The production capacity of  the head factory is not restricted but its production 
cost has to be considered. 

* The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of 
Education, Science and Culture, Grant No. (C)05650061. 



68 T A K A H I T O  K U N O  A N D  T A K A H I R O  U T S U N O M I Y A  

The production cost of each factory is in general a nondecreasing and concave 
function of the output, whence both the problems (P1) and (P2) have multiple 
locally optimal solutions, many of which need not be globally optimal. 

In their recent series of articles [9, 10, 11], Tuy et al. have proposed a strongly 
polynomial algorithm for solving a production-transportation problem similar to 
(P2), where each factory is allowed to supply any warehouses but the number of 
factories is assumed to be a constant. The cost function of their problem possesses 
rank-k property [8], where k is the number of factories, and its global minimum 
can be found in the course of solving a transportation problem parametrically. In 
this paper, without assuming the fixed number of branch factories, we will show 
that both (P1) and (P2) can be solved in time polynomial in the number of factories 
and warehouses and the total demand of warehouses. 

The organization of the paper is as follows: In Section 2, we will transform 
the problem (P1) into a kind of resource allocation problem, referred to as the 
master problem of (P1), by exploiting the special network structure stated above. 
Its objective function is defined by solving ra Hitchcock transportation problems, 
where ra represents the number of branch factories. In Section 3, to solve the master 
problem we will propose an algorithm using dynamic programming, and show that 
it requires O (ranb) arithmetic operations and O (nb) evaluations of the production 
cost function of each factory, where n and b are the number of warehouses and the 
production capacity of the head factory respectively. In Section 4, we will show 
that the problem (P2) can also be transformed into a resource allocation problem. 
The number of arithmetic operations needed for solving the resultant problem is 
0 (rand), where d is the total demand of warehouses. 

2. Decomposition of (P1) into Subproblems 

The problem we first consider is formulated below: 

minimize 

subject to 

m m 

i=O jEVi i = 1  

m 

~--~Yi <. b, 
i = 1  

E X Oj = Yi, E x ij = zi, 
j~V~ jEv~ 

XOj + Xij = dj, j E Vi, 

xij ) O, j E Vi, 

zi ) O, 

xoj ) 0, 

yi >/O, 

i =  1 , . . . , m ,  

i -  1 , . . . ,  ra, 

i= I,...,ra, 

(2.1) 
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Fig. 1. 
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Example of the problem. 

where b, dj > O, j E Vi, i = 1 , . . . ,  m, are integral, cij ) O, j E l/i, i = O, 1 , . . . ,  m ,  
are real, f i  " R1 __+ ]~1, i : 1 , . . . ,  m ,  are nondecreasing and concave functions, 
and 1/), i = O, 1 , . . . ,  ra, are index sets such that 

m 

s , t =  1 , . . . , rn ;  U V ~ = V 0 = { 1 , ' " , n } "  (2.2) 
i=1 

Using the example in Section 1, we can illustrate (2.1) as follows: For i = l , . . . ,  ra, 
warehouse j in region V/ requires dj units of the product and receives x0j and 
x i j  units from factories 0 and i respectively. Factory 0, which represents the head 
factory, produces at most b units and supplies warehouses in ~ with yi units. Factory 
i produces zi units at a cost of f i ( z i ) .  The decision maker of the corporation has to 
determine xi j ,  j E Vi, i = O, 1 , . . . ,  m ,  Yl and zl, i = 1 , . . . ,  ra, which minimizes 
the objective function of (2. I) expressing the total cost. Figure 1 shows a network 
of the problem when ra = 3 and n = 7. 

A special case of (2.1), where ra = 1, involves the problem studied by Tuy et 
al. in [9], and can be solved in O ( n  log n) arithmetic operations and n evaluations 
of  function fl  if we use the algorithm proposed in [9]. 

Any feasible solution of (2.1) has to satisfy 

zi -- ai - Y i ,  i = 1 , . . . , m ,  (2.3) 

w h e r e  ai = ~ j E  V~ d j .  We can therefore eliminate all z~"s from (2.1) by defining 

f i (Y i )  = f i (a i  - Yi), i = 1 , . . . , m .  (2.4) 
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f i  s are still concave but nonincreasing. The first problem is then as Obviously - '  
follows: 

minimize ~ cijxij + ~ fi(Yi) 
i=o j~v~ i=t 
m 

subject to ~ Yi <~ b, 
i = l  

(P1) ~ xOj = yl, ~ xij -- a i -  Yi, (2.5) 

jEV~ jEV~ 
XOj + Xij = dj, j ~ E, 

xoj ) O, xij ) O, j E Vi, 

Yi >1 O, 

i =  1 , . . . , m ,  

i =  1 , . . . , m ,  

i = 1 , . . . ,m~ 

i =  1 , . . . , m .  

2.1.  DEFINITION OF MASTER PROBLEM 

For any fixed y = (Yl, . . . ,  Y,(), we have a linear programming problem: 
m 

minimize ~ ~ CijXij 
i=0 jEVi 

(p(y)) subject to ~ x0j = Yi, ~ xij = a i -  Yi, i =  1 , . . . , m ,  (2.6) 
jEV~ jcv~ 
XOj ~- Xij = dj, j E Vi, i = 1 , . . . ,  m, 

xoj >/O, Xij >1 O, j E Vi, i = 1 , . . . ,  m. 

Due to the condition (2.2), problem (P(y)) can be decomposed into m subproblems 
(Pi(yi)), i = 1 , . . . ,  m, each of which is a Uitchcock transportation problem with 
two supply points: 

minimize ~ (COjXOj -]- ¢ijXij) 
j~vi 

(pi(yi)) subjectto ~ xoj = yi, ~ xij = ai - Yi, 
jEVi jEVi (2.7) 
xoj + xlj = dj, j E Vi, 

xoj ) O, xij ) O, j E Vi. 

If 0 ~< Yi <~ ai, then (Pi(Yi)) has an optimal solution. We denote it by a vector 
x~'(yi), whose components are x~j(yi), xi*j(yi ), j E E ,  and by gi(Yi) its optimal 
value. Obviously x*(y) = (xT(yl), . . . ,  x~(ym)) is an optimal solution of (P(y)) 
and ~im=l gi(Yi) is the optimal value. The original problem (P1) can be solved if 
we solve (P(y)) for all y satisfying ~im__l Yi <~ b and 0 <~ Yi <~ ai for every i. Let 

= + i = 1 , . . ,  (2 .8)  
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Then (P1) is reduced to a kind of resource allocation problem with m variables: 

(MP1) 

m 

minimize ~ hi(yi) 
i----1 

subject to ~ Yi <~ b, 
i=1 

O <<. yi <<. ai, i =  1 , . . . , m ,  

(2.9) 

which we call the master problem of (P1). Without loss of generality we may 
assume that 

b <~ ai = E dj . 
i=l j=l 

(2.10) 

The following lemma summarizes the above arguments: 

LEMMA 2.1. I f  y* is an optimal solution of  (MP1), then (x*(y*),y*) solves 
(P1), where x*(y*) = (x~(y~),. . . ,  x~(Ym) ) and x i (Yi ) is an optimal solution 
of  ( Pi(y~) ). [] 

2.2. ANALYTIC FORM OF FUNCTION hi 

To solve (MP1) we have to know the analytic form of function hi, which is a 
composition of two functions j~ and 9i. While the former is given beforehand, the 
latter requires solving the Hitchcock transportation problem (P~(y~)) as varying 
the value of Yi in the interval [0, ai]. 

Note that the constraint ~jEv~ xij -- a~ - y~ is implied by the others and hence 
can be deleted from the definition of (P/(y~)), i.e., 

minimize 

s u b j e c t  to 

E (CojXoj + CijXij) 
j~v~ 

E XOj = Yi~ 

XOj ~- Xij = d j ,  

xoj >1 O, xij >. O, 

j E V / ,  

j e l l .  

(2.11) 

We should also note that any feasible solution satisfies 

xi j  : dj  - xoj ,  Vj E V~. (2.12) 
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Then, by substituting (2.12) into (2.11), we have an equivalent problem with [V/[ 
variables: 

minimize ~ gjxoj + ~ cijdj 
j~v~ j~v, 

(Qi(yi)) subject to ~ xoj = Yi, (2.13) 
j~14 
O <<. zoj ~ dj, j ~ V~. 

where 6j = coj - cij, j C Vi. This is a continuous knapsack problem. If0 ~< Yl <~ ai, 
it is well known (see, e.g. [1]) that the optimal value of (Qi(yi)) is given by 

gi(Yi) = ~ cjzdjz + cp Yi - ~ djz + ~ cijdj (2.14) 
l=1 l=1 jEVi 

p - I  p for s o m e p  such that ~z=1 dj~ <<, Yi < ~ = 1  dj~, where 

Cjl ~ Cj2 ~ " '"  ~ Cjlv~l" (2.15) 

Let 
k 

a~0 -- o, agk = Z d J , ,  k = 1 , . . . ,  IVd, (2.16) 
/=1 

and let 

Ilk = [ai,k_l, aik], /~ = a , . . . ,  [vii,  (2.17) 

The analytic form of hi is then identified by the following: 

LEMMA 2.2. Function hi is concave on Iik for every k = 1 , . . . ,  117/I. 
Proof We immediately see from (2.14) that gi is a convex and piecewise affine 

function with break points among aik, k = 0, 1 , . . . ,  IV l Hence hi = j~ + gi is 
concave on each linear piece Iik = [ai,k-l, aik] o f  gi, because ~ is a concave 
function defined on R. [] 

In [9] Tuy et al. have derived the same result as Lemma 2.2. They have straight- 
forward used the network structure of (Pi (Yi)) instead of transforming it into the 
continuous knapsack problem. 

3. Solution Method for the Master Problem (MP1) 

Let us proceed to the algorithm for solving the master problem: 
m 

minimize ~ hi(Yi) 
i=1  

(MP1) m 
subject to ~ y~ ~< b, 

i=1 

O<~yi<~ai, i = 1 , . . . , m .  
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We will show that (MP1) can be solved using dynamic programming. For this 
purpose let us observe some properties of its optimal solutions. 

L E M M A  3.1. Problem (MP1) has an optimal solution y* = (y~ , . . . , y~  ), at least 
rn - 1 components o f  which are elements o f  the set {aiklk = 0 , . . . ,  I~1, i = 
1 , . . . , m } .  

Proof. Since b and all ai's are positive, the feasible region of (MP1) is nonempty 
and bounded. Every hi is continuous on [0, ai], and hence the objective function 
of  (MP1) attains the minimum at some y* in the feasible region. Suppose there are 

' * int Ips • and * which are not in aik s. Let yp E = two components of y*, say yp yq, 
( ap,s-1, aps ), yq E int Iqt = ( aq,t- l , aqt ), and let 

hpq(y) = hp(y) + hq(/3 - y), 

where/3 = yp + yq. Also let 

a___ = max{ap,s_l, /3 - aqt}, ~- = min{aps,/3 - aq,t_l}. 

Then y~ E (a_q, ~-) and hpq is concave on [a__, ~-]. Hence we have 

hpq(y~) >1 min{hpq(a),  hpq(~-)}, 

which implies that if we replace Yp, Yq by either ~,/3 - ~ or ~-,/3 - ~- then another 
t ! optimal solution y~ of (MP1) is provided. In this case, either yp or yq coincides 

with an extreme point of  its interval. [] 

Consider ra discrete optimization problems (DPi(Yi)), i = 1 , . . . ,  m, associated 
with (MP1): 

minimize ~ ht(yz) 
l¢i 

(DPi(yi))  subject to ~-~Yl <<. b -  Yi, (3.1) 
l¢i 

Yl E {alkl k = 0 , 1 , . . . , I V / l } ,  l #  i. 

We denote by Hi(y i )  the optimal value of (DPi(yi)).  It follows from Lemma 3.1 
that an optimal solution y* of (MP1) is found if we solve every (DPi(Yi)) for 
Yi E [0, ai]. Namely, 

min{min{hi(yi) + Hi(yi)lyi E [0, ai]}li = 1 , . . .  ,m}  (3.2) 

is the minimum value of the objective function of (MP1). 

L E M M A  3.2. For each i there exists an integer y~ C [0, ai] such that 

hi(y~) + Hi(y~) = min{hi (y i )  + Hi(Yi)lYi C [0, ai]}. (3.3) 
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Proof. Let y~ E -[is and suppose y~ is not integral. Since b and all al~'s are 
integral, it must hold that 

where [.] and L'J represent the integers obtained by rounding up and down • 
respectively. Hence we have 

hi(y~) + Hi(y~) ) min{hi([y~l) + Hi(VY~l),hi(Ly~J) + Hi( Ly:J)} 

by noting the concavity of hi on [[y~J, [y~]] C Iis. [] 

Thus (3.2) turns out to be 

min{min{h/(y; )  + Iti(y~)lyi = O, 1 . . . . .  ai}li = 1 . . . .  , m}. (3.4) 

3.1. DYNAMIC PROGRAMMING RECURSION 

Let us define a partial problem of (DPi( yi)): 

minimize ~ hz( yt ) 
teM(i,q) 

(DPq(Yl)) subject to ~ Yz <~ b - Yl, (3.5) 
IEn(i,q) 
YzE { a z h l k = 0 , 1 , . . . , l I : ? [ } ,  I E M(i ,q) ,  

where M(i ,q)  = { 1 , . . . , i -  1 , i +  1 , . . . , q } .  Denote by H~(yi) the optimal value 
of  (DP~(yl)) and let 

0 ifyi<~ b ,q=O,  

Hq(yi) = +oc  if Yl > b, q = 0 o r  Yi >/ b, i ¢ q > 0, (3.6) 

H[-l(yi)  i f i =  q. 

L E M M A  3.3. The values H~ ( yi ) 's satisfy, the following recursive formula: 

Hq(yi) = min{hq(%~) + H~-l(yi + aq~)lk = 0, 1 , . . . ,  II.:ql}. (3.7) 

Proof. By definition we have 

H~(yi) = min{hq(yq) + H~-l(yi + Yq)lYq E {aql~lk = 0 , 1 , - - . , l I ~ [ } }  

= min{hq(aq/~) + H~-l(yi + aqk)lk = 0, 1,. . . ,  IXJSI} [] 

- -  H m Since Hi(yi) i (Yi), to obtain Hi(yi) for all Yi E, [0, a:] we need only to 
compute Hq(9i) f o r  q = 1 . . . . .  i - 1, i + 1 . . . . .  m and Yi = b, b - 1 , . . . ,  1,0. 



PRODUCTION-TRANSPORTATION PROBLEMS 75 

Note that (DPi (yi)) can be transformed into a multiple-choice knapsack problem 
[6]. Through such a transformation, we will obtain a recursive formula like (3.7) 
(see [2, 6] for further details). 

We are now ready to present the algorithm for solving the target problem (Pl): 

ALGORITHM A. 

Step 1. For i = 1 , . . . ,  m do the following: 
1 ° Compute ~j = coj - cij, j E I,i, and sort them as ejl <. ¢j2 ~ " " "~:Jb';l '  

2 ° Let aio = O, aik = ~ = 1  djz, k = 1, . . . .  IVd, 
Step 2. For i = 1 , . . . ,  m do the following: 

1 ° Compute Hq(yi)  according to (3.6) and (3.7) in the order q = 1 , . . . .  i - 1, i + 
1, . . . .  m; yi = b , b -  1 , . . . , l e 0 .  
Let 

(3.8) 

o 

m y~ = argmin{hi(Yl)  + H i (.Yi)lYi = O, 1 , . . . , a i }  
' 1 and let vi = h(yi)  + H~(y~) .  

Step 3. Let 

v~ = min{v l ,v2 , . . . , v~} ,  

and let Yr = Y'r" Also let Y~, i E M (r, m ), be an optimal solution of (DP~. ( Y~- ) ). 
Then an optimal solution x* (y*) of (P(y*)) is optimal to (P 1). [] 

THEOREM 3.4. Algori thm A requires 0 (mnb)  arithmetic operations and 0 ( nb ) 
evaluations o f  f i  f o r  each i = 1~. . . ,  m. 

Proof. To sort ~j's Step 1 requires O(n  log n) arithmetic operations. If ~:j's are 
sorted, then for any y* we will have x*(y*) in time O(log n) using binary search. 
The total computational time of the algorithm is therefore dominated by Step 2.1 °. 
It takes 2[Vq[ additions, [l~[ - 1 comparisons and [Vq[ evaluations of f i  to compute 
HJ(yi ) .  For each i these numbers are bounded by 

b 

y~=O qEM(i,m) 

Hence the total number of arithmetic operations is ~-~im__ 1 0 ( n b )  = O(nmb) .  [] 

In general, Algorithm A does not run in time polynomial in the problem input 
length, even though the values of f i  are provided by an oracle. However, when 
all d j ' s  have a common value, say ~, the number of arithmetic operations is a 
polynomial function of only m and n. In this case, the value of b is bounded by 

~ i ~ l  IV/[ = ~n under the assumption (2.10), and hence the total number of 
arithmetic operations becomes 0 (ran b ) = 0 ( ran  2 ). 
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REMARK. We have assumed that all f i 's  are continuous and nondecreasing. 
Although f i 's  are certainly nondecreasing in many applications, it is inessential 
to Algorithm A. In contrast to this, we could not prove any lemmas in Section 3 
without assuming the continuity of fi's. However, one might reasonably expect 
f i 's  to be piecewise concave and discontinuous (e.g. fixed-charge cost functions). 
If f i 's  are lower semi-continuous, Algorithm A can be modified in order to handle 
discontinuous fi's. 

If we divide the intervals [ i k =  [ai,k- 1, aik]'S of (2.17) further at discontinuous 

points of j~, then mi intervals I i k =  [gi,k-1, gik], k = 1 , . . . ,  rai, are generated, 
where rai >1 IVi[ and 5ik is either some aik, or a discontinuous point of fi. Since 
f i  is concave on continuous pieces, hi is also concave on the interior of each ilk. 
Moreover, hi attains the minimum at some extreme points of ][ik's by the lower 
semi-continuity. These can prove all the lemmas in Section 3 if we replace ai~'s 
by gik's. The modified algorithm is polynomial in m, n, b and the number of con- 
tinuous pieces of fi's. [] 

3.2. NUMERICAL EXAMPLE 

Before concluding this section, let us illustrate Algorithm A using a simple example 
of (P1) with ra = 3, n = 7 and b = 10, whose network is given by Figure 1. 
Coefficients of the problem are 

(coj) = (1 ,7 ,5 ,6 ,3 ,2 ,7 ) ,  

(czj) = (e~ ,oc ,7 ,6 ,  1,ec, ec), 

(dj) = (2 ,5 ,6 ,3 ,2 ,7 ,4 ) .  

and the production cost of factory i ( ¢  0) is 

f i (z i )  = o~i " z ~ 

where 

(cti) = (2, 3, 5), (/3i) = (0.8, 0.3, 0.2). 

To solve the problem, we first compute 

(6j) = ( - 1 , - 1 , - 2 , 0 , 2 , - 3 , - 1 ) ,  

(a~k) = (0, 2, 7), ( a 2 k ) = ( 0 , 6 , 9 , 1 1 ) ,  

and sort ~j's as follows: 

(eli) = (2, 8, oc), 

( c 3 j )  = 

(a3k) = (0,7, 11), 

Cl ~ C2, C3 ~ C4 ~ C5, C6 ~ C7. 
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by 
Next, we compute H~(yi) for each i in Step 2. For example, H2(10) is given 

{ h2 a2o 10+a2o } / h20 10 } h29+ 
h2(a21) + / / ~ ( 1 0  + a21), = min 

min h2 (a22 )+H~(10+a22) ,  h2 (9 )+H~(19) ,  

h2(a23) + / / ~ ( 1 0  + a23), h2( l l )  + / /~ (21) ,  

It follows from (3.6) that 

H / ( 1 0 ) = H ° ( 1 0 ) = 0 ,  / / ~ ( 1 6 ) = H ~ ( 1 9 ) = H ~ ( 2 1 ) = + e ~ ,  

and from (2.4) and (2.8) that 

h2(0) = f2 ( l l  - 0) + 92(0) = 6.159 + 62 = 68.159. 

Hence we have 

H12(10) = h2(0 ) + H~(10) = 68.159. 

Similarly, 

//12(9) = / / 2 ( 8 )  =//12(7)---//12(6) =//12(5) = 68.159, 

//12(4) = / / 1 2 ( 3 ) =  H 2 ( 2 ) =  54.862, / /2(1)=/ /12(0)  = 53.693. 

Substituting these values into the recursive formula (3.7), we can compute the 
values of H 3, i.e., 

H13(10) = H 3 ( 9 ) =  H 3 ( 8 ) =  H 3 ( 7 ) = / / 3 ( 6 )  = H 3 ( 5 ) =  143.236, 

/ /3(4) = 129.939, H 3 ( 3 ) =  H 3 ( 2 ) = / / 3 ( 1 )  = HI3(0)= 120.757. 

On the other hand, the values of h l are 

hi(10) = hi(9) = hi(8) = hi(Y) = 37.000, 

hi(6) = 40.000, hi(5 ) = 40.482, 

h,(2)  = 49.248, h i ( l )  = 51.386, 

Thus, for i = 1, we obtain 

hi(4) = 44.816, hl(3 ) = 47.063, 

hi(0) = 53.487. 

y~ = 3 = argmin{hl(y~-) + H3(yi)lyl = 0, 1 , . . . ,  7}, 

Vl --= h1(3) + H13(3) = 167.820. 
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For i = 2, 3, we have the following in the same manner: 

g~ = 3, v2 = 167.682, 

y~ = 7, v3 -- 168.636. 3 

Finally, we obtain 

y* = ( 0 , 3 , 7 ) ,  x ~ ( y * ) = ( 2 , 5 ) ,  x ~ ( y * ) = ( 3 , 3 , 2 ) ,  

and the globally optimal value 167.682 in Step 3. 

X m y *  3( ) = ( 0 , 4 ) ,  

4. Application of the Algorithm to (P2) and Other Problems 

The second problem is as follows: 

minimize ~ ~ cijxij + ~ ~(Yi) + fo(Zo) 
i=O jcVi  i=1 
m 

subject to ~ gi = zo, 
i=1 

(P2) Z x ° j = Y i '  Z x i j : a i - y i ,  i :  1 , . . . , m ,  (4.1) 
jev~ jEv~ 

xoj ÷ xij : d j ,  j E l/i, i = 1 , . . . ,  m, 

xoj ) O, x~j ) O, j E Vi, i =  1 , . . . , m ,  

zO >/ O, Yi >1 O, i = 1 , . . . ,  m, 

where f0 is a nondecreasing and concave function of z0, and all of the other 
notations are the same as (P1). As before, we can define the master problem of 
(P2): 

minimize ~ hi(yi) ÷ fo(zo) 
i= I  

m (4.2) 
(MP2) subject to ~ Yi : zo, 

i : 1  

zo >l O, O ~ yi <~ ai, i =  1 , . . . , ra ,  

where ai = ~jev~ dj, hi(yi) = fi(yi) + gi(Yi), and gi(Yi) is the optimal value 
of the Hitchcock transportation problem (Pi(Yi)). If we obtain an optimal solution 
(y*, z~) of (MP2), then (x*(y*),y*, z~) solves (P2), where x*(y*) is an optimal 
solution of (P(y*)) defined by (2.6). 

Let d m = ~ i =  1 ai and let 

YO = d -  zo. (4.3) 
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For any feasible solution of (MP2) we have 0 ~< Y0 ~< d, since 0 ~< z0 ~< d must 
hold. Also let 

ho(yo) = fo(d  - Yo). (4.4) 

Then h0 is a concave function on/01 -= [0, d], and (MP2) is rewritten as 

m 

minimize ~ hi@i)  
i=0 

m (4.5) 
subject to ~ Yi = d, 

i=0 

O<~9o<~d, O<9i<~ai ,  i = 1 , . . . , r a ,  

which is of just the same form as (MP1). We can again apply dynamic programming 
to (4.5). Then Algorithm A will generate an optimal solution of (P2) in O(rand)  
arithmetic operations and 0 (nd) evaluations of fi for i = 0, 1 , . . . ,  m. 

4.1. NETWORK FLOW PROBLEMS ASSOCIATED WITH (P1) AND (P2) 

Minimum concave-cost flow problems is one of the most important and most 
difficult classes in both combinatorial and global optimization. To solve it many 
algorithms have been proposed so far (see [5, 3] and references therein), and 
some of them have turned out to be practically efficient for special problems. 
In particular, when the number of concave-cost arcs is fixed, one can solve the 
problem in polynomial time [4, 9, 12]. 

As is well known, every Hitchcock transportation problem can be transformed 
into a minimum cost flow problem and vice versa (see, e.g. [7]). Similarly, we 
can generate a minimum concave-cost flow problem from either (P1) or (P2) by 
equipping the underlying network with a super-source and m additional concave- 
cost arcs. The converse is also possible in the same way as in [9, 12], i.e., a certain 
class of minimum concave-cost network flow problems with ra concave-cost arcs 
can be transformed into either (P1) or (P2), the detail of which will be discussed 
in the subsequent paper. 
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